“Same Fringe” Revisited

Tags: , , , , , , , , , ,

The fringe of a binary tree is simply the sequence of leaves reading from left to right [1]. Comparing the fringe of two binary trees to see if they are the same has been described as the simplest problem that requires multiprocessing or coroutines to easily solve [2]. The challenge is to stop the comparison […]

Continue reading » 1 Comment

Producer/Consumer Rate-Matching

Tags: , , , , , , , , , , , , , , ,

Flow control is a critical feature in a network of asynchronous communicating processes. Our fanciful exploration of a yak-shaving barber’s shop provided us with patterns we can apply to more general problems. The bounded-buffer mechanism is a generalization of our barber’s waiting room. It mediates between producers and consumers, matching the rate of production with […]

Continue reading » No comments

“Sleeping Barber” in Humus

Tags: , , , , , , , , , ,

The “Sleeping Barber” problem is another classic concurrency example. As with our previous discussion of “Dining Philosophers”, actors allow a novel approaching to solving this problem. We will adjust a few of the details to enhance the metaphor and have a bit of fun with it. Our metaphorical barber provides yak shaving services. Yaks arrive […]

Continue reading » 5 Comments

Futures and Capabilities

Tags: , , , , , , , , , , , , , , , ,

In the Actor Model, concurrency is the default. Sequencing must by arranged explicitly. An important case of sequencing occurs when there is a data dependency between different parts of a system. One part produces a value that another part needs to perform its function. One mechanism for sequencing data-dependent operations is to create a Future. […]

Continue reading » 2 Comments

High Availability for Mutable Shared State

Tags: , , , , , , , ,

Mutable shared state is the root of all evil in concurrent systems. The history of concurrent computation is a basically the story of approaches to managing mutable shared state. The thread model, which has long held the dominant position, leads to intractable complexity [1]. The actor model captures state in the behavior of an actor. […]

Continue reading » 3 Comments

Erlang-style Mailboxes

Tags: , , , , , ,

One significant difference between message-passing in Erlang and the pure Actor Model is the Erlang concept of mailboxes. Actors don’t have mailboxes, at least not in the sense that they can be queried. Messages simply arrive at some non-deterministic time after they are asynchronously sent, invoking the current behavior of the actor. However, in Erlang, […]

Continue reading » No comments

Actors Make Better Observers

Tags: , , , , , , , , , ,

The Observer pattern causes temporal coupling in systems with synchronous message passing. This can lead to failure in Object-Oriented systems. Asynchronous messaging avoids the pitfalls. Actor-based implementations more accurately realize the original intent of the pattern. The intent of the Observer pattern is to “define a one-to-many dependency between objects so that when one object […]

Continue reading » 3 Comments

Message Passing, part 1 – Synchronous Rendezvous

Tags: , , , , , , ,

What do we mean when we say “message-passing”. For Object-Oriented developers from the Smalltalk tradition, message-passing involves a dynamic method lookup, invocation of that method with the target object as an implicit parameter, and return of a result object. By contrast, message-passing in synchronous communication models (such as Ï€-calculus) involves “rendezvous” between sender and receiver, […]

Continue reading » 3 Comments

Actors in Clojure – Why Not?

Tags: , , , , , , , , , , ,

In his article about state management in Clojure, Rich Hickey discusses his reasons for choosing not to use the Erlang-style actor model. While Erlang has made some implementation choices that can lead to problems, the problems are not intrinsic to the Actor Model. As the actor implementation with the longest history of success, Erlang naturally […]

Continue reading » 14 Comments

Solving “Same Fringe” with Stream Generators

Tags: , , , , , , ,

A classic problem in concurrent programming is known as the “same fringe” problem [1]. What is the same fringe problem? As described by Richard Gabriel [2]: The samefringe problem is this: two binary trees have the same fringe if they have exactly the same leaves reading from left to right. There are many different approaches […]

Continue reading » 8 Comments